|
快速葉綠素熒光(OJIP)可作為監測植物在非生物脅迫下光合生理狀態(tài)的有效工具
歡迎點(diǎn)擊「漢莎科學(xué)儀器」↑關(guān)注我們! 摘要在自然條件下生活的植物會(huì )受到許多干擾光合作用過(guò)程的不利因素的影響,導致生長(cháng)、發(fā)育和產(chǎn)量的下降。葉綠素a熒光光譜(ChlF)的研究為葉片光化學(xué)效率研究提供了一條新的途徑。具體地說(shuō),對熒光信號的分析可獲取PSII反應中心、捕光天線(xiàn)復合體以及PSII供體側/受體側的狀態(tài)和功能的詳細信息。在這里,我們回顧了快速ChlF技術(shù)(OJIP & JIP-test)分析光合反應對環(huán)境脅迫的相關(guān)成果,并討論了這一創(chuàng )新方法的潛在科學(xué)和實(shí)際應用。最近便攜式設備(Handy PEA & M-PEA, Hansatech Instruments)的出現,特別是在作物表型分型和監測方面,大大擴展了ChlF技術(shù)的潛在應用。 關(guān)鍵詞 Chlorophyll fluorescence、JIP-test、Photosynthesis、Photosystem II、Quantum efficiency、Stress detection
縮寫(xiě)
| Absorption flux | 吸收通量 | | Chlorophyll | 葉綠素 | | Chlorophyll fluorescence | 葉綠素熒光 | | Cross section of the sample | 樣品橫截面 | | Cytochrome b6f | 細胞色素b6f | | Delayed (chlorophyll) fluorescence | 延遲(葉綠素)熒光 | | Drought factor index | 干旱因子指數 | | Light-harvesting complex (of PSII) | PSII捕光色素復合體 | | Oxygen-evolving complex | 放氧復合體 | | Excited PSII reaction center | 激發(fā)的PSII反應中心 | | PSI reaction center | PSI反應中心 | | Photosynthetically active radiation | 光合有效輻射 | | Plastocyanin | 質(zhì)體藍素 | | Principal component analysis | 主成分分析 | | Prompt (chlorophyll) fluorescence | 瞬時(shí)(葉綠素)熒光 | | Pheophytin | 去鎂葉綠素 | | Plastoquinone | 質(zhì)體醌 | | Photosystem I, II | 光系統I, II | | Primary plastoquinone electron acceptor of PSII | PSII初級質(zhì)體醌電子受體 | | Secondary plastoquinone electron acceptor | 次級質(zhì)體醌電子受體 | | Reaction center | 反應中心 | | Reactive oxygen species | 活性氧 | 在21世紀,全球農業(yè)必須生產(chǎn)更多的糧食來(lái)維持不斷增長(cháng)的人口(Beddington et al. 2012)。然而,這一目標受到人為氣候變化的威脅,這種變化有可能顯著(zhù)降低受影響地區的糧食產(chǎn)量(Lobell et al.2008)。最近的研究表明,葉綠素熒光(ChlF)測量可以為改進(jìn)全球農業(yè)生產(chǎn)力模型提供獨特的基準,提高氣候變化情景下作物產(chǎn)量預測的可靠性(Guanter et al. 2014; Malaspina et al. 2014)。更廣泛地說(shuō),ChlF技術(shù)正在成為農業(yè)、環(huán)境和生態(tài)研究中的一個(gè)非常強大的工具(Gottardiniet al. 2014)。它的一個(gè)主要優(yōu)點(diǎn)是ChlF技術(shù)是一種非侵入性的工具,允許科學(xué)家在不破壞被測樣品的情況下獲得光合過(guò)程的豐富信息。在自然條件下,植物受到許多不利的環(huán)境脅迫因子的影響。這些會(huì )破壞光合器官,導致植物生產(chǎn)力和總產(chǎn)量下降。光合作用對環(huán)境脅迫特別敏感(Kalaji et al. 2012),使光合測量成為植物脅迫研究的重要組成部分。然而,傳統的方法,甚至是技術(shù)上先進(jìn)的方法,如通過(guò)氣體交換(CO2、H2O和O2)測量光合速率,需要耗費大量時(shí)間和人力,且提供的有關(guān)整體光合功能的信息并不完整。相比之下,ChlF測量是一種簡(jiǎn)單、無(wú)損、廉價(jià)和快速的工具,可用于分析光依賴(lài)性光合反應和間接評估同一樣本組織中的葉綠素含量(Govindjee 1995; Papageorgiou & Govindjee 2011; Stirbet & Govindjee 2011, 2012)。ChlF方法的這些技術(shù)優(yōu)勢使其成為植物育種家(例如作物表型和監測)、生物技術(shù)學(xué)家、植物生理學(xué)家、林業(yè)工作者、生態(tài)學(xué)家和環(huán)境學(xué)家的流行技術(shù)。
關(guān)鍵的是,從植物脅迫研究的角度來(lái)看,ChlF測量還提供了有關(guān)植物生理狀況的間接信息。通過(guò)分析葉綠素熒光(ChlF)誘導曲線(xiàn),可以評估光系統II(PSII)和光合電子傳遞鏈的生理狀況。它還提供了光依賴(lài)的光化學(xué)反應和光無(wú)關(guān)的生化反應的相關(guān)信息?偟膩(lái)說(shuō),ChlF測量直接或間接地與依賴(lài)光的光合反應的所有階段有關(guān),包括水的光解、電子傳遞、類(lèi)囊體膜上pH梯度的形成、ATP合成以及光合機構的一般生物能條件等(Bernát et al. 2012)。 許多ChlF技術(shù)和應用現在已經(jīng)開(kāi)發(fā)出來(lái),為植物光合作用研究提供了豐富的技術(shù)手段。本文綜述了連續激發(fā)式熒光儀測量的快速葉綠素熒光動(dòng)力學(xué)曲線(xiàn)(OJIP)的相關(guān)學(xué)術(shù)成果。這些研究是通過(guò)開(kāi)發(fā)一個(gè)可靠的數學(xué)模型JIP-test(Strasser et al. 2004),允許分析在不到1s內發(fā)生的熒光變化。此類(lèi)分析提供了關(guān)于PSII反應中心、天線(xiàn)以及PSII的供體和受體側的狀態(tài)和功能的詳細信息。綜述了脅迫因子對光化學(xué)過(guò)程的影響,對快速ChlF動(dòng)力學(xué)和相關(guān)生物物理參數的變化規律。暗適應葉片照光后可獲得多相葉綠素熒光誘導曲線(xiàn)(O–J–I–P-瞬變)(圖1)。曲線(xiàn)的軌跡提供了有關(guān)光合機構結構和功能的大量信息(Kautsky & Hirsch 1931; Schreiber et al. 1994)。
JIP-test是基于多相快速葉綠素熒光的上升階段,用于研究光依賴(lài)性反應與ChlF的相關(guān)性。它基于類(lèi)囊體膜的“能量流”理論(Strasser et al. 2000)。這個(gè)理論可以用簡(jiǎn)單的代數方程來(lái)計算,代表每一個(gè)被檢測的捕光復合體的總能量流入和流出之間的平衡,并提供關(guān)于吸收能量的可能分配的信息。利用這些方程,可以描述PSII復合體之間的能量通信(也稱(chēng)為“聚集grouping”或“連通性connectivity”和“總體分組概率overall grouping probability”)(Stirbet 2013)。 JIP-test(OJIP)的名稱(chēng)來(lái)源于ChlF信號形成的感應曲線(xiàn)上的特定位點(diǎn)(圖1):這些位點(diǎn)對應于PSII原初電子受體(Pheo)和QA的逐漸還原。誘導曲線(xiàn)的形狀取決于PSII各組分間的聚集性(L-band)(Tsimilli-Michaeland Strasser 2013)和電子供體OEC→P680+以及QA-電子的接收之間的平衡(K-band)(Strasser et al. 2005)。 O~J相的熒光上升階段與部分PSII反應中心的閉合相關(guān),反應了QA的還原水平,其還原程度取決于捕獲速率以及QA被QB和其余電子傳遞鏈成員氧化的速率。 誘導曲線(xiàn)的J~I相與次級電子受體QB、PQ、Cyt b6f和PC的還原程度相關(guān)。誘導曲線(xiàn)的I~P相的上升通常歸因于PSI受體側電子受體(鐵氧還原蛋白、中間受體和NADP)的還原。 高溫、強光、缺氮或干旱脅迫會(huì )抑制放氧復合體OEC并阻礙OEC與酪氨酸之間的電子傳遞(Guha et al. 2013)。脅迫條件下,在ChlF誘導曲線(xiàn)200~300μs范圍內會(huì )出現一個(gè)波峰——K-band,表明OEC已受到破壞。
圖1:典型的植物葉綠素熒光多相動(dòng)力學(xué)曲線(xiàn)(主圖),曲線(xiàn)以對數時(shí)間刻度(10μs~600s)繪制。左上部插圖顯示了按常規時(shí)間標度繪制的相同曲線(xiàn)。右下方插圖按常規時(shí)間標度繪制的OJIP瞬態(tài)(0-30ms)的初始部分。時(shí)間標記是指JIP-test用于計算結構和功能參數的選定時(shí)間點(diǎn)。 表征PAR能量吸收和電子傳遞的JIP-test參數可主要分為以下四組:(1)基本測量值和計算值[熒光(Ft)、可變熒光(Vt)值和初始斜率等];(2)量子產(chǎn)率和概率;(3)能量通量;和(4)性能指數。表征能量通量的生物物理參數分為specific和phenomenological兩大類(lèi)。specific參數按反應中心(RC)計算,phenomenological參數按樣品截面(CS)計算。性能指數(PI)由幾個(gè)獨立參數的乘積計算得出,分別包括反應中心的密度、初級光化學(xué)反應的量子效率和電子傳遞中激發(fā)能的轉換(Strasser et al. 2000, 2004, 2010; Zushi et al. 2012)。性能指數被創(chuàng )建為非特定參數,主要用于實(shí)際應用,如篩選在田間條件下增強的應力耐受性(Srivastava et al. 1999; Strasser et al. 2004; Brestic & Zivcak 2013)。葉綠素熒光動(dòng)力學(xué)也可以用來(lái)揭示光合機構的PSII異質(zhì)性。PSII在天線(xiàn)色素和還原側方面具有天然異質(zhì)性。天線(xiàn)異質(zhì)性包括天線(xiàn)尺寸和天線(xiàn)色素分子組分間的連通性(或聚集性)差異。PSII反應中心基于天線(xiàn)尺寸可分為三類(lèi):alpha (α), beta (β)和gamma (γ) (Melis & Homann 1976),其主要區別在于天線(xiàn)壽命和伴生葉綠素的數量。還原側的異質(zhì)性主要與從QA開(kāi)始電子傳遞的能力有關(guān)?蓪㈦娮佑QA傳遞給QB的反應中心命名為可還原QB的反應中心(QB reducing centers),而不具備此能力的反應中心稱(chēng)之為不可還原QB的反應中心(QB non-reducing centers)。Jajoo(2013)回顧了PSII異質(zhì)性的具體特征。近期研究表明,高溫(Mathur et al. 2011b),高鹽(Mehta et al. 2010a)以及如多環(huán)芳烴(PAH)等污染物(Tomarand Jajoo 2013, 2014)脅迫下均會(huì )引起PSII異質(zhì)性的變化。PSII異質(zhì)性的變化可能與活躍/不活躍反應中心的數量有關(guān),在各種脅迫條件下活躍的α反應中心轉換為非活躍的β和γ反應中心,同時(shí)不可還原QB的反應中心數量也隨之增多。葉綠素熒光動(dòng)力學(xué)參數對不同非生物脅迫的響應在下面的章節中,我們回顧了ChlF動(dòng)力學(xué)可以作為氣候變化和人類(lèi)活動(dòng)(如高溫和低溫、干旱、鹽分、營(yíng)養缺乏和重金屬)負面影響的有效指標的證據。 圖2:不同脅迫條件下小麥(Triticum sp.L.)葉綠素熒光的O(K)JIP瞬態(tài)與非脅迫下的比較。插入顯示了O-J相(∆VOJ)、J-I相(∆VJI)、I-P相(∆VIP)的相對可變熒光振幅的變化,以及0.3 ms可變熒光(VK/VJ)與2ms可變熒光比值(VJ)的變化,作為PSII供體側限制(K-band)的指標。各圖顯示了相對于非脅迫狀態(tài)下植物(control,C)的瞬時(shí)熒光曲線(xiàn):a熱脅迫(高溫脅迫8h,中度光化光照射,葉片溫度約40℃);b低溫脅迫10d(10/6℃:日間/夜間);c重度干旱脅迫(停止灌溉后12d,葉片含水量約60%);d鹽脅迫(NaCl);e氮缺乏脅迫(低氮,LN);f鉛脅迫。 氣候變化可能會(huì )增加植物的熱脅迫,限制生產(chǎn)力和生物量的積累。光合作用是植物細胞過(guò)程中對高溫最敏感的過(guò)程(Sharkey & Schrader 2006),高溫會(huì )導致PSII電子受體還原-氧化特性發(fā)生變化,并降低兩個(gè)光系統中光合電子傳輸的效率(Mathur et al. 2014)。熱脅迫會(huì )影響ChlF參數的值(圖2a)。例如蘋(píng)果Malus x domestica Borkh在高溫脅迫下,其QA-/RC和QB-/QA-的比率均產(chǎn)生下降,同時(shí)PSII最大量子產(chǎn)率(Fv/Fm)降低而最小熒光Fo升高(Chen et al. 2009; Brestic et al. 2013)。高溫脅迫同樣會(huì )對O-J-I-P曲線(xiàn)的形狀產(chǎn)生影響,會(huì )導致Fm的降低和Fo升高。Fo的升高可能是由于捕光色素復合體LHC II從PSII復合體上解離、PSII光化學(xué)反應的失活或還原的電子受體QA至QB電子流傳遞受到抑制而導致的(Mathur et al. 2011a)。例如,由菠菜和水稻中觀(guān)察到的Fo升高歸因于LHC II與PSII復合體的不可逆解離和PSII的部分可逆性失活(Yamane et al. 1997)。Fm的降低可能與葉綠素蛋白的變性有關(guān)(Yamane et al. 1997)。K峰(300μs)是熱應激一個(gè)極佳的指示指標,可用于指示放氧復合體OEC的解離和去鎂葉綠素Pheo與初級電子受體QA間的電子傳遞情況(Strasser et al. 2000; Lazár 2006)。在小麥中,35℃處理時(shí)對凈光合速率未產(chǎn)生影響,而當45℃處理時(shí)則對OEC產(chǎn)生了不可逆的損傷(Schreiber et al. 2012)。K峰出現的直接原因是電子由P680向PSII電子受體的流出量遠超于電子由PSII供體側向P680的流入量。同時(shí)K峰也會(huì )受到光系統II之間能量關(guān)系變化的影響。FK/FJ比率的增大表明熱脅迫抑制了OEC的電子供應(Srivastava & Strasser 1995)。快速ChlF技術(shù)也是監測PSII熱穩定性有效方法。最有效的方法是評估臨界溫度,即在臨界溫度以上觀(guān)測相應參數的快速增加或減少(Brestic & Zivcak 2013)。在作物育種中,一些基因型可以作為增強耐熱性的供體。以熱處理菜豆(Phaseolus vulgaris L.)品系為例,通過(guò)ChlF誘導的變化來(lái)監測其脅迫反應和恢復狀況,并應用JIP-test進(jìn)行分析(Stefanov et al. 2011)。Brestic et al. (2012)利用快速ChlF動(dòng)力學(xué)方法對30個(gè)不同地理來(lái)源冬小麥基因型的PSII熱穩定性進(jìn)行了研究。Gautum et al. (2014)證明ChlF法在硬粒小麥基因型篩選中比常規方法(如收獲指數、籽粒灌漿等)更有效。在某些緯度地區,低溫是限制作物產(chǎn)量的主要因素(Yang et al. 2009)。在北半球冬季和早春的低溫通常伴隨著(zhù)強光照現象,在這種環(huán)境條件下,會(huì )導致植物類(lèi)囊體結構退化和光依賴(lài)性的光合反應的扭曲(Suzuki et al. 2011)。冷脅迫同樣會(huì )影響ChlF參數(圖2b)。例如,低溫脅迫下苦瓜(Momordica charantia L.)植株的葉綠素含量、PSII供體側OEC效率、光化學(xué)猝滅和開(kāi)放的PSII反應中心效率均降低(Yang et al. 2009)。某些具有極佳低溫耐受性的物種表現出較少的PSII光抑制。例如,低溫脅迫下豌豆植株的ChlF參數只有極小的變化(Strauss et al. 2006; Strebet al. 2008)。干旱脅迫對光合器官的影響是眾所周知的。在中等干旱強度下它們通常開(kāi)始主要是氣孔效應,嚴重或長(cháng)期干旱脅迫最終會(huì )導致代謝和結構性變化(Jedmowski et al. 2013)。這種最終的變化也與光保護和抗氧化功能和途徑的增強有關(guān)(Chaves et al. 2009)。與PSI相比,PSII具有較高的抗缺水能力,因此只有在極端干旱的情況下才會(huì )產(chǎn)生負面影響(Lauriano et al. 2006)。ChlF測量表明,在干旱條件下,通過(guò)調節光系統之間的能量分布和激活交替電子流,增強了PSII和PSI光化學(xué)的保護作用(Zivcak et al. 2013)。干旱脅迫可增強PSII對熱脅迫的抗性,表現為OJIP瞬態(tài)的K峰的消失(見(jiàn)圖2c,Oukarroum et al. 2012)。ChlF方法可用于篩選耐旱性基因型(Guha et al. 2013)。OJIP熒光曲線(xiàn)上升的最初2~3ms階段與初級光化學(xué)反應相關(guān),Oukarroum et al. (2007)建議脅迫激發(fā)出現的L-band和K-band可作為評估應對和恢復干旱脅迫潛力的有效工具。L-band受PSII各組分間激發(fā)能傳遞的影響,通常表示為連通性(connectivity)或聚集性(grouping)(Strasser & Stirbet 1998)。不論是突變(Brestic et al. 2014)或環(huán)境條件(Zivcak et al. 2014a)而引發(fā)的PSII天線(xiàn)色素組分的改變,同樣會(huì )使L-band受到影響。K-band的出現與放氧復合體OEC的解離有關(guān)(Guisse et al. 1995)。因此,O-L-K-J-I-P熒光瞬態(tài)的測量和利用JIP-test進(jìn)行的分析可以作為干旱脅迫耐性和干旱脅迫可見(jiàn)癥狀出現前生理紊亂的有效指示工具。性能指數(PI)是應用最廣泛的ChlF OJIP曲線(xiàn)參數,為我們提供了關(guān)于植物狀態(tài)和活力的定量信息。PI由三個(gè)獨立特性的參數乘積組成:每個(gè)葉綠素分反應中心濃度、初級光化學(xué)反應相關(guān)參數和電子傳遞相關(guān)參數(Strasser et al. 2004)。因此PI對天線(xiàn)特性、捕獲效率或除QA外的電子傳遞的變化都很敏感。例如,冬小麥在花后長(cháng)期干旱脅迫下,PI值降低。此外,根據干旱脅迫下的PI值估算的小麥基因型的耐旱性與以產(chǎn)量為指標的抗旱性也有很好的相關(guān)性(Zivcaket al. 2008)。PI與干旱因子指數(DFI)密切相關(guān),DFI表示在一定的干旱脅迫時(shí)間內,PI的相對減少量。Strauss等人使用了DFI方法(Strauss et al. 2006)評估不同大豆基因型的耐暗冷性。DFI還被用于對10個(gè)大麥品種(Oukarroum et al. 2007)和21種芝麻突變體種質(zhì)資源(Boureima et al. 2012)的耐旱性進(jìn)行排序。利用PI參數和ChlF快速誘導曲線(xiàn)成功篩選了來(lái)自埃及的**耐性和最敏感的大麥和高粱品種(Jedmowskiet al. 2013)。這些研究表明,在PSII水平上可以區分耐旱性和敏感性品種。在干旱脅迫下同樣觀(guān)察到ABS/RC的增大(Van Heerden et al. 2007; Gomeset al. 2012),這可能是由于部分PSIIRCs失活或天線(xiàn)尺寸增大而導致的。干旱脅迫也會(huì )影響OJIP曲線(xiàn)I~P相的相對振幅。I~P相是熒光曲線(xiàn)上升的最慢階段(約30~200ms),與質(zhì)體籃素PC和PSI中P700+的再還原有關(guān)(Schreiber et al. 1989; Schansker et al. 2003)。I~P相似乎與PSI反應中心的含量(Ceppiet al. 2012)或由820nm透射測量得到的線(xiàn)性電子傳遞活性(Zivcak et al. 2014a)有關(guān)。例如,不同大麥品種的I~P損失程度取決于它們的耐旱性(Oukarroum et al. 2009; Ceppi et al. 2012)。ChlF是在光合樣品在暗到光轉換之后發(fā)射的,而延遲熒光(DF)的發(fā)射發(fā)生在光到暗的轉換過(guò)程中(Goltsev et al. 2009; Strasser et al. 2010; Kalaji et al. 2012)。DF被認為反映了還原的初級電子受體QA-和光誘導電荷分離形成的PSII氧化供體P680+的在黑暗狀態(tài)下的再復合。DF誘導曲線(xiàn)的形狀取決于樣品材料類(lèi)型和其生理狀態(tài)。使用Hansatech公司M-PEA多功能植物效率分析儀同時(shí)測量ChlF 瞬時(shí)熒光OJIP曲線(xiàn)和DF曲線(xiàn),目前被用于獲取不同光合反映的速率常數(Strasser et al. 2010)。使用此技術(shù)Goltsev et al. (2012)觀(guān)察到在干旱脅迫下QA-的再氧化受到抑制,PSII反應中心光誘導電子傳遞量子產(chǎn)率被抑制,調制反射信號(820nm)的光誘導動(dòng)力學(xué)快速相降低。 植物對鹽脅迫的反應是由多個(gè)方面決定的,如特定基因的表達、植物的發(fā)育階段、甜菜堿的積累,這些甜菜堿通過(guò)穩定PSII復合體的外部蛋白質(zhì)來(lái)保護光合機構(Murata et al. 1992)。鹽分脅迫干擾了從RCs至質(zhì)體醌庫的電子傳遞(Strasser et al. 2000; 圖2d)。Schreiber et al. (1994)鑒定出OEC是光合電子傳遞鏈中最敏感的組分之一。OEC性能的下降通常是由于電子傳遞紊亂引起的。鹽脅迫下同樣可觀(guān)察到ChlF參數和PSII功能性的改變。在高鹽脅迫下,由于LHC II和PSII解離導致了PSII反映中心捕獲電子效率的下降(Havaux 1993)。在許多物種中,如大麥(Kalaji & Rutkowska 2004)、煙草Nicotiana tobacum L. (Yang et al. 2008)、甚至某些鹽生植物如草珊瑚Sarcocorniafruticosa L中,均觀(guān)察到了PSII最大量子效率(Fv/Fm)的降低和非光化學(xué)淬滅(NPQ或qN)的增加。此外,番茄和黃瓜幼苗在鹽分脅迫下,光下PSII光化學(xué)效率(ΦPSII)、電子傳遞效率(ETR)和光照下PSII開(kāi)放反應中心的效率均受影響而降低(He et al. 2009; Zhang & Sharkey 2009)。鹽脅迫對小麥的傷害主要表現在供體側,而非受體側,這種損傷在PSII受體側是完全可逆的(約100%),而供體側的恢復率小于85%(Mehta et al. 2010b)。鹽脅迫的滲透和離子效應也通過(guò)ChlF測量得到了有效區分(Singh-Tomar et al. 2012)。特定營(yíng)養元素(N、P、K、Ca、Mg、S或Fe)的缺乏會(huì )破壞光合器官的功能,降低PSII光化學(xué)效率并改變ChlF參數的值(Smethurst et al. 2005)。氮素(N)缺乏是限制植物生長(cháng)的關(guān)鍵因素,是所有蛋白質(zhì)、核酸和其他有機化合物的組成部分。氮素缺乏導致類(lèi)囊體膜的改變并擾亂其功能(圖2e),并進(jìn)一步加速葉綠體衰老和質(zhì)體小球的形成(Wu et al. 2006)。氮也是RuBisCO光合復合物、卡爾文循環(huán)酶、葉綠素和類(lèi)胡蘿卜素中的重要元素(Correia et al. 2005)。氮缺乏會(huì )導致蒸騰作用、氣孔導度、葉綠素和類(lèi)胡蘿卜素含量以及可溶性糖濃度的降低(Huang et al. 2004)。氮攝取不足也會(huì )降低PSII中的電子受體庫,降低RuBisCO和磷酸烯醇式丙酮酸羧化酶(PEPCase)的活性(Correia et al. 2005)。JIP-test分析已經(jīng)在處理氮缺乏的研究中多次應用,并且已經(jīng)很好地描述了氮供應不足對PSII的影響(Redillas et al. 2011, Li et al. 2012)。特別是,氮素缺乏導致的反應中心密度顯著(zhù)降低(Dudeja & Chaudhary 2005)。同時(shí),高氮處理對大豆(Van Heerden et al. 2004)、玉米(Li et al. 2012)和小麥(Zivcak et Val. 2014b)中PI值的積極影響已經(jīng)得到了證明。磷對植物的生長(cháng)發(fā)育也是必不可少的。磷缺乏將主要導致籽粒和類(lèi)囊體膜結構改變、捕光復合體吸收PAR的下降,從而導致PSII活性的降低(Foyer & Spencer 1986)。磷缺乏還對NADPH的再生過(guò)程產(chǎn)生不利影響,降低光合作用的量子產(chǎn)率、羧化效率和電子傳遞效率(Wu et al. 2006)。JIP-test已成功應用于磷缺乏脅迫下植物PSII活性或效率的評估(Kruger et al. 1997; Tsimilli-Michael & Strasser 2008)。此外各種研究證明,JIP-test參數和氣體交換或植物生長(cháng)參數具有高度相關(guān)性(Strasser et al. 2000)。鉀(K)在細胞滲透調節中起著(zhù)關(guān)鍵作用:鉀離子是保持類(lèi)囊體膜上的pH梯度所必需的(Rampino et al. 2006)。鉀缺乏會(huì )導致氣孔導度阻力增加,限制二氧化碳通過(guò)氣孔的擴散。在光合作用中,鉀在許多酶的激活和ATP合成中的重要作用可能比它在調控氣孔功能中的作用重要的多。然而鉀缺乏對光合組織效率和PSII功能的影響知之甚少。然而,在缺鉀條件下,一些光合參數如電子傳遞效率(ETR)和最大量子產(chǎn)率(Fv/Fm)都會(huì )降低(Schweiger et al. 1996)。有許多研究使用快速ChlF參數來(lái)分析其他礦物質(zhì)缺乏對光化學(xué)功能的影響,例如鈣(Liu et al. 2009; Lauriano et al. 2006)、鎂(Smethurst et al. 2005)和鐵(Molassiotis et al. 2006)。由于許多營(yíng)養物質(zhì)對PSII光化學(xué)反應有特殊的影響,這里的問(wèn)題是是否有可能利用葉綠素熒光動(dòng)力學(xué)來(lái)識別營(yíng)養缺乏。盡管這一問(wèn)題仍然懸而未決,Kalaji et al. (2014a, b)能夠利用JIP-test參數的主成分分析(PCA)來(lái)識別番茄和玉米的主要營(yíng)養素的缺乏情況。高濃度的重金屬脅迫會(huì )破壞光合作用進(jìn)程,但特定重金屬離子的影響可能是物種特異性的(Antosiewicz 2005; Mishra & Dubey 2005)。PSI被認為比PSII更能耐受重金屬的脅迫(Romanowska et al. 2006; Tuba et al. 2010)。鎘(Cd)是毒性最大的重金屬之一,可在生物體內富集。環(huán)境中鎘的來(lái)源包括磷肥和工業(yè)廢料(Romanowska et al. 2006; Kalaji & Łoboda 2007)。然而,鎘似乎不會(huì )影響光合色素的含量。對油菜幼苗的研究表明,在Cd存在下生長(cháng)2周后,葉綠素a、葉綠素b和類(lèi)胡蘿卜素的含量沒(méi)有顯著(zhù)變化(Janeczko et al. 2005)。然而,Cd確實(shí)對光合過(guò)程的光化學(xué)效率有負面影響。PSII比PSI對鎘的影響更敏感,表明Cd以更大的強度破壞PSII功能(Mallick & Mohn 2003)。Cd同時(shí)影響PSII的供體和受體側。在供體側,它抑制OEC,而在受體側,由于LHCII復合體的解離導致電子傳遞紊亂,抑制了QA-和QB-之間的電子傳遞(Sigfridsson et al. 2004)。Cd脅迫同樣會(huì )引發(fā)非光學(xué)淬滅或熱耗散的升高(Janeczko et al. 2005)。對油菜JIP-test參數的分析表明,Cd引起了油菜葉片橫截面比能流如RC/CS、ETo/CS和OEC活性的降低(Janeczko et al. 2005)。PSII最大量子效率Fv/Fm是Cd脅迫影響最不敏感的參數。植物對鎘的抗性與“清除”活性氧的能力、激活抗氧化酶[特別是過(guò)氧化物酶(Ekmekci et al. 2008)]以及合成抗氧化化合物[如谷胱甘肽(Streb et al. 2008)]等保護機制的啟動(dòng)有關(guān)。鉛對植物也有有害影響。土壤和植物中鉛的主要源頭來(lái)自于燃煤發(fā)電廠(chǎng)、汽車(chē)尾氣和工業(yè)廢棄物(Mishra & Dubey 2005)。鉛會(huì )引起呼吸代謝的改變,導致線(xiàn)粒體產(chǎn)生高能化合物,使ATP含量和ATP/ADP比值升高(Romanowska et al. 2002)。鉛脅迫下植物光合作用效率的降低是由于葉綠體超微結構和類(lèi)囊體膜脂成分的破壞,以及葉綠素和類(lèi)胡蘿卜素合成的減少造成的(Sharma & Dubey 2005)。鉛脅迫會(huì )阻斷如鎂和鐵等營(yíng)養元素的吸收,而鎂和鐵是光合作用所必需的。此外鉛還會(huì )導致OEC復合體的解離,并將Ca,Cl,Mn化合物從OEC復合體中分離去除(Sharma & Dubey 2005; Romanowska et al. 2006)。與對照組相比,暴露于鉛脅迫的植物的O–J–I–P誘導曲線(xiàn)中I和P階的熒光強度降低(圖2f),并出現K峰(Kalaji & Łoboda 2007)。ChlF誘導曲線(xiàn)上出現以上變化可能與OEC和PSII反應中心之間的電子傳遞抑制有關(guān)(Strasser et al. 2004; Wu et al. 2008)。鉛脅迫模型表明,PSII內的能量吸收和耗散很高,而電子捕獲和電子傳遞則大幅減少(Lazár & Jablonsky 2009)。用于快速ChlF動(dòng)力學(xué)分析的數學(xué)模型,如JIP-test,是專(zhuān)門(mén)用來(lái)評估微秒級或毫秒級葉綠體氧化還原反應級聯(lián)反應的生物物理工具。盡管如此,早期的研究即已經(jīng)獲取了很多關(guān)于葉片生理狀態(tài)和熒光瞬態(tài)曲線(xiàn)形狀之間關(guān)系的有趣的經(jīng)驗理論(Strasser et al. 2000)。隨后又有許多文獻報道了葉片生理狀態(tài)與ChlF瞬變之間的直接關(guān)系。而常被忽略的一個(gè)事實(shí)是測量得到的信號是一個(gè)復合信號(見(jiàn)上文關(guān)于PSII異質(zhì)性的討論),而該信號是與樣品測定時(shí)的生理狀態(tài)和環(huán)境條件高度相關(guān)的。因此,需要我們多方考慮各種因素的綜合作用,以避免錯誤地或過(guò)度簡(jiǎn)化的得出結論(Evans 2009)。快速葉綠素熒光技術(shù)操作簡(jiǎn)單、快速,但如對其基本理論原理了解不深,很容易造成對該技術(shù)的不當應用。綜合參數的使用,如性能指數(PI)可能比復雜的特定生物物理參數更有用,后者需要對光化學(xué)過(guò)程有更深入的理解才能正確地解釋數據。Stirbet & Govindjee (2011)深入探討了JIP-test在分析OJIP曲線(xiàn)中的各方利弊。為了避免ChlF應用中的錯誤,強烈建議所有用戶(hù)熟悉該技術(shù)的各種理論細節(見(jiàn)Kalaji et al. 2014a綜述文章)。本文介紹了葉綠素熒光技術(shù)在植物科學(xué)、農業(yè)和生態(tài)研究中應用的**信息。葉綠素熒光的測量信號及其統計分析(如JIP-test)可用于預測、監測和識別植物的脅迫。因此,它可以作為一種生物指示劑應用于幾乎所有的植物生態(tài)學(xué)研究中。ChlF測量的多功能性意味著(zhù)它們可以在單一植物的水平上應用于草原、農田甚至海洋生態(tài)系統。然而,這種潛在的多功能性強調了需要進(jìn)行更實(shí)際和概念性的研究,使科學(xué)家能夠獲得有關(guān)植物生長(cháng)和健康的可靠信息。這樣一種方法不僅將使我們對光合作用的生理基礎的理解得到改善,而且還將有助于了解和補救氣候變化對作物產(chǎn)量和糧食安全的影響。- AntosiewiczDM (2005) Study of calcium-dependent lead-tolerance on plants differing intheir level of Ca-deficiency tolerance. Environ Pollut 134(1):23–34
- BeddingtonJ, Asaduzzaman M, Clark M, Bremauntz AF, Guillou M, Howlett D, Jahn M, Lin E,Mamo T, Negra C (2012) What next for agriculture after Durban? Science335:289–290
- BernátG, Schreiber U, Sendtko E, Stadnichuk IN, Rexroth S, Rögner M, Koenig F (2012)Unique properties vs. common themes: the atypical cyanobacterium Gloeobacterviolaceus PCC 7421 is capable of state transitions and blue-light-inducedfluorescence quenching. Plant Cell Physiol 53(3):528–542
- BoureimaS, Oukarroum A, Diouf M, Cisse N, Van Damme P (2012) Screening for droughttolerance in mutant germplasm of sesame (Sesamum indicum) probing by chlorophylla fluorescence. Environ Exp Bot 81:37–43
- BresticM, Zivcak M (2013) PSII Fluorescence techniques for measurement of drought andhigh temperature stress signal in crop plants: protocols and applications.Molecular stress physiology of plants. Springer, Berlin, pp 87–131
- BresticM, Zivcak M, Kalaji MH, Carpentier R, Allakhverdiev SI(2012) Photosystem IIthermostability in situ: environmentally induced acclimation andgenotype-specific reactions in Triticum aestivum L. Plant PhysiolBiochem 57:93–105
- BresticM, Zivcak M, Olsovska K, Repkova J (2013) Involvement of chlorophyll afluorescence analyses for identification of sensitiveness of the photosyntheticapparatus to high temperature in selected wheat genotypes. Photosynthesisresearch for food, fuel and the future. Springer, Berlin, pp 510–513
- BresticM, Zivcak M, Olsovska K, Shao HB, Kalaji MH, Allakhverdiev SI (2014) Reducedglutamine synthetase activity plays a role in control of photosyntheticresponses to high light in barley leaves. Plant Physiol Biochem 81:74–83.doi:10.1016/j.plaphy.2014.01.002
- CeppiMG, Oukarroum A, C ¸i c ¸ek N, Strasser RJ, Schansker G (2012) The IP amplitudeof the fluorescence rise OJIP is sensitive to changes in the photosystem Icontent of leaves: a study on plants exposed to magnesium and sulfatedeficiencies, drought stress and salt stress. Physiol Plant 144(3):277–288
- ChavesMM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress:regulation mechanisms from whole plant to cell. Ann Bot 103(4):551–560
- ChenLS, Li P, Cheng L (2009) Comparison of thermotolerance of sun-exposed peel andshaded peel of ‘Fuji’apple. Environ Exp Bot 66(1):110–116
- CorreiaCM, Pereira JMM, Coutinho JF, Björn LO, Torres-Pereira JMG (2005) Ultraviolet-Bradiation and nitrogen affect the photosynthesis of maize: a Mediterraneanfield study. Eur J Agron 22(3):337–347
- DudejaSS, Chaudhary P (2005) Fast chlorophyll fluorescence transient and nitrogenfixing ability of chickpea nodulation variants. Photosynthetica 43:253–259
- Ekmekc¸i Y, Tanyolac D, Ayhan B (2008) Effects of cadmium on antioxidant enzyme andphotosynthetic activities in leaves of two maize cultivars. J Plant Physiol165(6):600–611
- EvansJR (2009) Potential errors in electron transport rates calculated fromchlorophyll fluorescence as revealed by a multilayer leaf model. Plant CellPhysiology 50(4):698–706
- FoyerC, Spencer C (1986) The relationship between phosphate status andphotosynthesis in leaves. Planta 167(3):369–375
- GautumA, Agrawal D, SaiPrasad SV, Jajoo A (2014) A quick method to screen high andlow yielding wheat cultivars exposed to high temperature. Physiol Mol BiolPlants. doi:10.1007/s12298-014-0252-4
- GoltsevV, Zaharieva I, Chernev P, Kouzmanova M, Kalaji MH, Yordanov I, Krasteva V,Alexandrov V, Stefanov D, Allakh-verdiev SI, Strasser RJ (2012) Drought-inducedmodifications of photosynthetic electron transport in intact leaves: analysisand use of neural networks as a tool for a rapid non-invasive estimation.Biochim Biophys Acta 1817:1490–1498
- GoltsevV, Zaharieva I, Chernev P, Strasser RJ (2009) Delayed chlorophyll fluorescenceas a monitor for physiological state of photosynthetic apparatus. BiotechnolBiotechnol Equip 23(Special Edition):452–457
- GomesMTG, da Luz AC, dos Santos MR, Batitucci MDCP, Silva DM, Falqueto AR (2012)Drought tolerance of passion fruit plants assessed by the OJIP chlorophyll afluorescence transient. Sci Hortic 142:49–56
- GottardiniE, Cristofori A, Cristofolini F, Nali C, Pellegrini E, Bussotti F, Ferretti M(2014) Chlorophyll-related indicators are linked to visible ozone symptoms:evidence from a field study on native Viburnum lantana L. plants innorthern Italy. Ecol Ind 39:65–74
- Govindjee(1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. AusJ Plant Physiol 22:131–160
- GuanterL, Zhang Y, Jung M, Joiner J, Voigt M, Berry JA, Frankenberg C, Huete AR,Zarco-Tejada P, Lee JE (2014) Global and time-resolved monitoring of cropphotosynthesis with chlorophyll fluorescence. Proc Natl Acad Sci111(14):E1327–E1333
- GuhaA, Sengupta D, Reddy AR (2013) Polyphasic chlorophyll a fluorescencekinetics and leaf protein analyses to track dynamics of photosyntheticperformance in mulberry during progressive drought. J Photochem Photobiol B119:71–83
- GuisséB, Srivastava A, Strasser RJ (1995) Effects of high temperature and waterstress on the polyphasic chlorophyll a fluorescence transient of potatoleaves. In: Mathis P (ed) Photosynthesis: from light to biosphere. KluwerAcademic Publishers, Dordrecht, pp 913–916
- HavauxM (1993) Rapid photosynthetic adaptation to heat stress triggered in potatoleaves by moderately elevated temperatures. Plant Cell Environ 16(4):461–467
- HeY, Zhu Z, Yang J, Ni X, Zhu B (2009) Grafting increases the salt tolerance oftomato by improvement of photosynthesis and enhancement of antioxidant enzymesactivity. Environ Exp Bot 66(2):270–278
- HuangZA, Jiang DA, Yang Y, Sun JW, Jin SH (2004) Effects of nitrogen deficiency ongas exchange, chlorophyll fluorescence, and antioxidant enzymes in leaves ofrice plants. Photosynthetica 42(3):357–364
- JajooA (2013) Changes in photosystem II in response to salt stress. Ecophysiologyand responses of plants under salt stress. Springer, Berlin, pp 149–168
- JaneczkoA, Koscielniak J, Pilipowicz M, Szarek-Lukaszewska G, Skoczowski A (2005)Protection of winter rape photosystem 2 by 24-epibrassinolide under cadmiumstress. Photosynthetica 43(2):293–298
- JedmowskiC, Ashoub A, Bru ¨ggemann W (2013) Reactions of Egyptian landraces of Hordeumvulgare and Sorghum bicolor to drought stress, evaluated by the OJIP fluorescencetransient analysis. Acta Physiologiae Plantarum 35(2):345–354
- KalajiMH, Rutkowska A (2004) Reactions of photosynthetic apparatus of maize seedlingsto salt stress. Zesz Probl Post NaukRol 496:545–558
- KalajiMH, Carpentier R, Allakhverdiev SI, Bosa K (2012) Fluorescence parameters asearly indicators of light stress in barley. J Photochem Photobiol B 112:1–6
- KalajiMH, Schansker G, Ladle RJ, et al (2014a) Frequently asked questions about invivo chlorophyll fluorescence: practical issues. Photosynth Res. doi:10.1007/s11120-014-0024-6
- KalajiMH, Oukarroum A, Alexandrov V, Kouzmanova M, Brestic M, Zivcak M, Goltsev V(2014b) Identification of nutrient deficiency in maize and tomato plants by invivo chlorophyll a fluorescence measurements. Plant Physiol Biochem.doi:10.1016/j.plaphy.2014.03.029
- KautskyH, Hirsch A (1931) NeueVersuchezur Kohlensaureassimilation. Naturwissenschaften19:964
- KrugerGHJ, Tsimilli-Michael M, Strasser RJ (1997) Light stress provokes plastic andelastic modifications in structure and function of photosystem II in camellialeaves. Physiol Plant 101:265–277
- LaurianoJA, Ramalho JC, Lidon FC, Ce úmatos M (2006) Mechanisms of energy dissipationin peanut under water stress. Photosynthetica 44(3):404–410
- LazárD (2006) The polyphasic chlorophyll a fluorescence rise measured under highintensity of exciting light. Funct Plant Biol 33(1):9–30
- LazárD, Jablonsky J (2009) On the approaches applied in formulation of a kineticmodel of photosystem II: different approaches lead to different simulations ofthe chlorophyll a fluorescence transients. J Theor Biol 257(2):260–269
- LiG, Zhang ZS, Gao HY, Liu P, Dong ST, Zhang JW, Zhao B (2012) Effects ofnitrogen on photosynthetic characteristics of leaves from two differentstay-green corn (Zea mays L.) varieties at the grain-filling stage. CanJ Plant Sci 92:671–680
- LiuWJ, Chen YE, Tian WJ, Du JB, Zhang ZW, Xu F, Zhang F, Yuan S, Lin HH (2009)Dephosphorylation of photosystem II proteins and phosphorylation of CP29 inbarley photosynthetic membranes as a response to water stress. Biochim BiophysActa 1787(10):1238–1245
- LobellDB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008)Prioritizing climate change adaptation needs for food security in 2030. Science319:607–610
- ŁobodaT, Kalaji MH (2007) Photosystem II of barley seedlings under cadmium and leadstress. Plant Soil Environ 53(12):511
- MalaspinaP, Giordani P, Faimali M, Garaventa F, Modenesi P (2014) Assessingphotosynthetic biomarkers in lichen transplants exposed under different lightregimes. Ecol Ind 43:126–131
- MallickN, Mohn F (2003) Use of chlorophyll fluorescence in metalstress research: acase study with the green microalga Scenedesmus. Ecotoxicol Environ Saf55(1):64–69
- MathurS, Mehta P, Jajoo A, Bharti S (2011a) Analysis of elevated temperature inducedinhibition of Photosystem II using Chl a fluorescence inductionkinetics. Plant Biology 13:1–6
- MathurS, Allakhverdiev SI, Jajoo A (2011b) Analysis of high temperature stress on thedynamics of antenna size and reducing side heterogeneity of Photosystem II inwheat leaves (Triticum aestivum). Biochim Biophys Acta 1807(1):22–29
- MathurS, Agrawal D, Jajoo A (2014) Photosynthesis: limitations in response to hightemperature stress. J Photochem Photobiol B Biol. doi: 10.1016/j.jphotobiol.2014.01.010
- MehtaP, Allakhverdiev SI, Jajoo A (2010a) Characterization of photosystem IIheterogeneity in response to high salt stress in wheat leaves (Triticumaestivum). Photosynth Res 105(3):249–255
- MehtaP, Jajoo A, Mathur S, Bharti S (2010b) Chlorophyll a fluorescence studyrevealing effects of high salt stress on Photosystem II in wheat leaves. PlantPhysiol Biochem 48(1):16–20
- MelisA, Homann PH (1976) Heterogeneity of the photochemical centers in system II ofchloroplasts. Photochem Photobiol 23:343–350
- MishraS, Dubey R (2005) Heavy metal toxicity induced alterations in photosyntheticmetabolism in plants. In: Pessarakli M (ed) Handbook of photosynthesis, vol 28.CRC Press, Boca Raton, pp 827–844
- MolassiotisA, Tanou G, Diamantidis G, Patakas A, Therios I (2006) Effects of 4-month Fedeficiency exposure on Fe reduction mechanism, photosynthetic gas exchange,chlorophyll fluorescence and antioxidant defense in two peach rootstocksdiffering in Fe deficiency tolerance. J Plant Physiol 163(2):176–185
- MurataN, Mohanty P, Hayashi H, Papageorgiou G (1992) Glycinebetaine stabilizes theassociation of extrinsic proteins with the photosynthetic oxygen-evolvingcomplex. FEBS Lett 296(2):187–189
- OukarroumA, Madidi SE, Schansker G, Strasser RJ (2007) Probing the responses of barleycultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIPunder drought stress and rewatering. Environ Exp Bot 60(3):438–446
- OukarroumA, Schansker G, Strasser RJ (2009) Drought stress effects on photosystem Icontent and photosystem II thermotolerance analyzed using Chl afluorescence kinetics in barley varieties differing in their drought tolerance.Physiol Plant 137(2):188–199
- OukarroumA, El Madidi S, Strasser RJ (2012) Exogenous glycine betaine and proline play aprotective role in heat-stressed barley leaves (Hordeum vulgare L.): achlorophyll a fluorescence study. Plant Biosyst 146(4):1037–1043
- PapageorgiouGC, Govindjee (2011) Photosystem II fluorescence: slow changes—scaling from thepast. J Photochem Photobiol B 104(1–2):258–270
- RampinoP, Pataleo S, Gerardi C, Mita G, Perrotta C (2006) Drought stress response inwheat: physiological and molecular analysis of resistant and sensitivegenotypes. Plant Cell Environ 29(12):2143–2152
- RedillasMCFR, Jeong JS, Strasser RJ, Kim YS, Kim JK (2011) JIP analysis on rice (Oryzasativa cv Nipponbare) grown under limited nitrogen conditions. J Korean SocAppl Biol Chem 54:827–832
- RomanowskaE, Igamberdiev AU, Parys E, Gardeström P (2002) Stimulation of respiration byPb2+ in detached leaves and mitochondria of C3 and C4 plants.Physiol Plant 116(2):148–154
- RomanowskaE, Wróblewska B, Dro_ zak A, Siedlecka M (2006) High light intensity protects photosyntheticapparatus of pea plants against exposure to lead. Plant Physiol Biochem44(5):387–394
- SchanskerG, Srivastava A, Govindjee, Strasse RJ (2003) Characterization of the 820-nmtransmission signal paralleling the chlorophyll a fluorescence rise (OJIP)in pea leaves. Funct Plant Biol 30(7):785–796
- SchreiberU, Neubauer C, Klughammer C (1989) Devices and methods for room-temperaturefluorescence analysis. Philos Trans Royal Soc London B Biol Sci323(1216):241–251
- SchreiberU, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a nonintrusiveindicator for rapid assessment of in vivo photosynthesis. Ecophysiology ofphotosynthesis. Springer, Berlin, pp 49–70
- SchreiberU, Klughammer C, Kolbowski J (2012) Assessment of wavelength-dependent parametersof photosynthetic electron transport with a new type of multi-color PAMchlorophyll fluorometer. Photosynth Res 113(1–3):127–144
- SchweigerJ, Lang M, Lichtenthaler HK (1996) Differences in fluorescence excitationspectra of leaves between stressed and non-stressed plants. J Plant Physiol148(5):536–547
- SharkeyTD, Schrader SM (2006) High temperature stress. Physiology and molecularbiology of stress tolerance in plants. Springer, Berlin, pp 101–129
- SharmaP, Dubey RS (2005) Lead toxicity in plants. Brazilian Journal of PlantPhysiology 17:35–52
- SigfridssonKG, Berna ′t G, Mamedov F, Styring S (2004) Molecular interference of Cd2+with Photosystem II. Biochim Biophys Acta 1659(1):19–31
- Singh-TomarR, Mathur S, Allakhverdiev SI, Jajoo A (2012) Changes in PSII heterogeneity inresponse to osmotic and ionic stress in wheat leaves (Triticum aestivum). JBioenerg Biomembr 44:411–419
- SmethurstCF, Garnett T, Shabala S (2005) Nutritional and chlorophyll fluorescenceresponses of lucerne (Medicago sativa) to waterlogging and subsequent recovery.Plant Soil 270(1):31–45
- SrivastavaA, Strasser RJ (1995) How do land plants respond to stress temperature andstress light? Arch Sci Geneve 48:135–146
- SrivastavaA, Strasser RJ, Govindjee (1999) Greening of peas: parallel measurements of 77K emission spectra, OJIP chlorophyll a fluorescence transient, periodfour oscillation of the initial fluorescence level, delayed light emission, andP700. Photosynthetica 37:365–392
- StefanovD, Petkova V, Denev ID (2011) Screening for heat tolerance in common bean (Phaseolusvulgaris L.) lines and cultivars using JIP-test. Sci Hortic 128(1):1–6
- StirbetA (2013) Excitonic connectivity between photosystem II units: what is it, andhow to measure it? Photosynth Res 116:189–214
- StirbetA, Govindjee (2011) On the relation between the Kautsky effect (chlorophyll afluorescence induction) and Photosystem II: basics and applications of the OJIPfluorescence transient. J Photochem Photobiol B 104(1–2):236–257
- StirbetA, Govindjee (2012) Chlorophyll a fluorescence induction: a personalperspective of the thermal phase, the J–I–P rise. Photosynth Res 113:15–61
- StrasserRJ, Stirbet AD (1998) Heterogeneity of photosystem II probed by the numericallysimulated chlorophyll a fluorescence rise (O–J–I–P). Math Comput Simul48(1):3–9
- StrasserRJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as atool to characterize and screen photosynthetic samples. In: Mohanty P, Yunus,Pathre (eds) Probing photosynthesis: mechanism, regulation and adaptation.Taylor and Francis, London, pp 443–480
- StrasserRJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll afluorescence transient. In: Papageorgiou G, Govindjee (eds) Advances inphotosynthesis and respiration. chlorophyll a fluorescence: a signatureof photosynthesis. Springer, Dordrecht, pp 321–362
- StrasserRJ, Tsimilli-Michael M, Srivastava A, Srivastava A (2005) Analysis of thechlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee(eds) Advances in photosynthesis and respiration. Chlorophyll afluorescence: a signature of photosynthesis. Kluwer Acad. Publ, Dordrecht, pp321–362
- StrasserRJ, Tsimilli-Michael M, Qiang S, Goltsev V (2010) Simultaneous in vivorecording of prompt and delayed fluorescence and 820-nm reflection changesduring drying and after rehydration of the resurrection plant Haberlearhodopensis. Biochimical BiophysicalActa 1797:1313–1326
- StraussA, Kru ¨ger G, Strasser RJ, Heerden PV (2006) Ranking of dark chillingtolerance in soybean genotypes probed by the chlorophyll a fluorescencetransient OJIP. Environ Exp Bot 56(2):147–157
- StrebP, Aubert S, Gout E, Feierabend J, Bligny R (2008) Cross tolerance toheavy-metal and cold-induced photoinhibiton in leaves of Pisum sativumacclimated to low temperature. Physiol Mole Biol Plants 14(3):185–193
- SuzukiK, Ohmori Y, Ratel E (2011) High root temperature blocks both linear and cyclicelectron transport in the dark during chilling of the leaves of rice seedlings.Plant Cell Physiology 52(9):1697–1707
- TomarRS, Jajoo A (2013) A quick investigation of the detrimental effects ofenvironmental pollutant polycyclic aromatic hydrocarbon fluoranthene on thephotosynthetic efficiency of wheat (Triticum aestivum). Ecotoxicology22(8):1313–1318
- TomarRS, Jajoo A (2014) Fluoranthene, a polycyclic aromatic hydrocarbon, inhibitslight as well as dark reactions of photosynthesis in wheat (Triticum aestivum).Ecotoxicol Environ Saf 109:110–115
- Tsimilli-MichaelM, Strasser RJ (2008) In vivo assessment of stress impact on plants’ vitality:applications in detecting and evaluating the beneficial role of Mycorrhizationon host plants. In: Varma A (ed) Mycorrhiza: state of the art, genetics and molecularbiology, eco-function, biotechnology, eco-physiology, structure andsystematics, vol 3rd. Springer, Berlin, pp 679–703
- Tsimilli-MichaelM, Strasser RJ (2013) The energy flux theory 35 years later: formulations andapplications. Photosynth Res 117(1–3):289–320. doi:10.1007/s11120-013-9895-1
- TubaZ, Saxena DK, Srivastava K, Singh S, Czebol S, Kalaji MH (2010) Chlorophyll afluorescence measurements for validating the tolerant bryophytes for heavymetal (Pb) biomapping. Curr Sci 98(11):1505–1508
- VanHeerden PD, Strasser RJ, Kru ¨ger GH (2004) Reduction of dark chilling stressin N2-fixing soybean by nitrate as indicated by chlorophyll a fluorescencekinetics. Physiol Plant 121:239–249
- VanHeerden PDR, Swanepoel JW, Kru ¨ger GHJ (2007) Modulation of photosynthesis bydrought in two desert scrub species exhibiting C3-mode CO2 assimilation.Environ Exp Bot 61(2):124–136
- WuC, Wang Z, Sun H, Guo S (2006) Effects of different concentrations of nitrogenand phosphorus on chlorophyll biosynthesis, chlorophyll a fluorescence,and photosynthesis in Larix olgensis seedlings. Front Forest China1(2):170–175
- WuX, Hong F, Liu C, Su M, Zheng L, Gao F, Yang F (2008) Effects of Pb2+on energy distribution and photochemical activity of spinach chloroplast.Spectrochimica Acta Part A Mol Biomol Spectrosc 69(3):738–742
- YamaneY, Kashino Y, Koike H, Satoh K (1997) Increases in the fluorescence Fo leveland reversible inhibition of Photosystem II reaction center by high-temperaturetreatments in higher plants. Photosynth Res 52:57–64
- YangX, Liang Z, Wen X, Lu C (2008) Genetic engineering of the biosynthesis ofglycinebetaine leads to increased tolerance of photosynthesis to salt stress intransgenic tobacco plants. Plant Mol Biol 66(1–2):73–86
- YangJ, Kong Q, Xiang C (2009) Effects of low night temperature on pigments, chl afluorescence and energy allocation in two bitter gourd (Momordica charantiaL.) genotypes. Acta Physiologiae Plantarum 31(2):285–293
- ZhangR, Sharkey TD (2009) Photosynthetic electron transport and proton flux undermoderate heat stress. Photosynth Res 100(1):29–43
- ZivcakM, Brestic M, Olsovska K, Slamka P (2008) Performance index as a sensitiveindicator of water stress in Triticum aestivum. Plant Soil Environ54:133–139
- ZivcakM, Brestic M, Balatova Z, Drevenakova P, Olsovska K, Kalaji MH, AllakhverdievSI (2013) Photosynthetic electron transport and specific photoprotectiveresponses in wheat leaves under drought stress. Photosynth Res 117:529–546
- ZivcakM, Kalaji MH, Shao HB, Olsovska K, Brestic M (2014). Photosynthetic proton andelectron transport in wheat leaves under prolonged moderate drought stress. JPhotochem Photobiol B Biol. doi: 10.1016/j.jphotobiol.2014.01.007
- ZivcakM, Olsovska K, Slamka P, Galambosova J, Rataj V, Shao HB, Brestic M (2014b)Application of chlorophyll fluorescence performance indices to assess the wheatphotosynthetic functions influenced by nitrogen deficiency. Plant Soil Environ60:210–215
- ZushiK, Kajiwara S, Matsuzoe N (2012) Chlorophyll a fluorescence OJIP transient as atool to characterize and evaluate response to heat and chilling stress intomato leaf and fruit. Sci Hortic 148:39–46
|
|